A nanoscale metal alkoxide/oxide adhesion layer enables spatially controlled metallization of polymer surfaces.

نویسندگان

  • T Joseph Dennes
  • Jeffrey Schwartz
چکیده

Seeding polymer substrates for the attachment and growth of metallic contacts is an important problem in modern microcircuit fabrication. A new method to effect such polymer metallization is described in which the polymer is first treated with vapor of zirconium or titanium tetra-tert-butoxide and then thermalyzed to give several monolayers of zirconium or titanium oxides that are attached to the polymer surfaces. The thickness of this layer can be controlled by the vapor exposure time. The thin oxide layers withstand removal by strenuous flexing of the polymers, and they absorb copper sulfate from an aqueous solution. Upon simple treatment with dialkylaminoborane or sodium borohydride, the polymer is metallized with copper. The tetra-tert-butoxides can be deposited through a mask, and patterned metallization of the polymers is easily accomplished.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Nanoscale Interface Directs Alignment of a Confluent Cell Layer on Oxide and Polymer Surfaces.

Templating of cell spreading and proliferation is described that yields confluent layers of cells aligned across an entire two-dimensional surface. The template is a reactive, two-component interface that is synthesized in three steps in nanometer thick, micron-scaled patterns on silicon and on several biomaterial polymers. In this method, a volatile zirconium alkoxide complex is first deposite...

متن کامل

Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films

Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative va...

متن کامل

Sacrificial adhesion promotion layers for copper metallization of device structures.

The adhesion of copper films to adjacent device layers including TiN, Ta, and TaN diffusion barriers is a crucial reliability issue for integrated circuits. We report that ultrathin layers of poly(acrylic acid) (PAA) prepared on barrier surfaces or on the native oxide of Si wafers dramatically increase the interfacial adhesion of Cu films deposited by the H2 assisted reduction of bis(2,2,7-trim...

متن کامل

Direct electroplated metallization on indium tin oxide plastic substrate.

Looking foward to the future where the device becomes flexible and rollable, indium tin oxide (ITO) fabricated on the plastic substrate becomes indispensable. Metallization on the ITO plastic substrate is an essential and required process. Electroplating is a cost-effective and high-throughput metallization process; however, the poor surface coverage and interfacial adhesion between electroplat...

متن کامل

Oxide Reduction in Advanced Metal Stacks for Microelectronic Applications

Aluminum and copper are widely used for microelectronic interconnect applications. Interfacial oxides can cause device performance degradation and failure by significantly increasing electrical resistance. Interfacial oxide layers found in Al/Ta and Ta/Cu metal stacks were studied using Transmission Electron Microscopy (TEM) combined with Energy Dispersive Spectroscopy (EDS) and Parallel Electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 1 10  شماره 

صفحات  -

تاریخ انتشار 2009